當前位置:首頁 > 技術文章
在材料科學與電子設備制造領域,薄膜技術的突破正推動著產品性能的迭代升級。從柔性顯示屏的透明導電層到半導體芯片的納米級柵極氧化層,膜厚控制精度直接決定了材料的電學、光學及機械性能。膜厚測量儀作為關鍵質量檢測工具,憑借其非接觸、高精度、快速分析...
在半導體制造、光學鍍膜、新能源材料等精密工業領域,薄膜厚度的均勻性與精確性直接決定了產品性能與良率。傳統薄膜厚度測量依賴手動定位或固定點檢測,存在效率低、數據覆蓋不全、人為誤差大等痛點。而搭載電動R-Theta平臺的薄膜厚度測量儀,通過極坐標自動化掃描與高精度定位,實現了從“單點抽檢”到“全域測繪”的跨越,為工業質量控制提供了革命性解決方案。一、R-Theta平臺:極坐標掃描的精密之基電動R-Theta平臺由旋轉(Theta)與徑向移動(R)雙軸構成,可模擬極坐標系下的精準運...
在半導體制造與微電子領域,晶圓表面涂層厚度的精確控制直接決定了器件性能與良率。傳統膜厚測量方法依賴人工取樣或離線檢測,存在效率低、破壞性、數據片面性等痛點。而光學膜厚儀憑借其非接觸、高精度、全自動化測繪能力,已成為晶圓涂層厚度檢測的核心工具,推動行業向智能化、高效化轉型。1.技術原理:干涉光譜解碼薄膜厚度光學膜厚儀的核心技術基于光的干涉與反射原理。當寬帶白光垂直入射至晶圓涂層時,光線在涂層表面與基底界面分別反射,兩束反射光因光程差產生干涉現象。通過分光儀捕捉干涉光譜,儀器可解...
光學膜厚儀作為現代材料科學中至關重要的精密測量工具,其核心原理基于光的干涉現象與薄膜光學特性。當一束光波照射至透明或半透明薄膜表面時,部分光在膜層上表面反射,另一部分穿透膜層后在下表面反射,兩束反射光因光程差產生干涉現象。通過分析干涉圖樣的光強分布與相位變化,可精確推導出薄膜的物理厚度與光學參數。一、干涉原理的數學表達干涉現象的本質是光波的相位疊加。當兩束反射光的光程差為波長的整數倍時,發生建設性干涉,光強達到極大值;當光程差為半波長的奇數倍時,發生破壞性干涉,光強降至最小值...
在柔性電子、半導體制造及新能源材料研發領域,薄膜電阻的精確測量是評估材料性能的核心指標。Delcom20J3STAGE薄膜電阻測量儀憑借其非接觸式渦流技術、高精度傳感器及智能化軟件系統,成為行業實驗室與產線的關鍵設備。以下從操作流程、核心功能及行業應用三個維度,解析其高效使用方法。一、設備安裝與基礎配置1.機械結構組裝儀器臺采用13毫米聚甲醛樹脂與鋁支架制成,尺寸為55×47×8cm,重量10kg。安裝時需將傳感器固定于儀器臺下方平臺,通過兩個螺釘完成快速定位。臺面提供46×...
光學顯微鏡適配器通過多通道光路設計、智能濾光片切換系統及環境光控制技術,有效破解熒光與明場成像沖突,實現兩種觀察方式的無縫切換與高質量成像,具體分析如下:多通道光路設計:獨立傳輸與干擾隔離適配器采用分光棱鏡與可調濾光片模塊,構建獨立的光路傳輸通道。熒光激發光(如488nm激光)與明場照明光通過不同路徑傳輸,避免光路串擾。例如,在活細胞動態觀測中,適配器可同時獲取細胞形態(明場)與分子標記(熒光)信息,且兩種信號互不干擾,成像清晰度顯著提升。智能濾光片切換系統:快速響應與精準匹...